

Summary

Paper

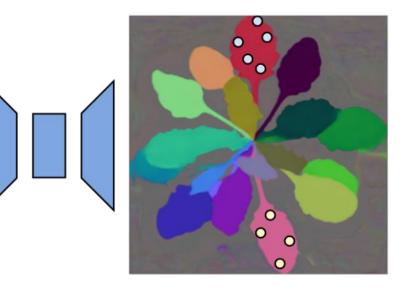
- Problem: state-of-the-art instance segmentation methods require dense annotations
- Goal: an instance segmentation technique trainable from sparsely labeled instances
- Approach: embedding-based instance segmentation trained from positive-unlabeled (PU) supervision
- Outperforms other embedding-based methods at a significantly reduced annotation cost
- Achieves state-of-the-art on the CVPPP benchmark

Positive-Unlabeled Supervision

- Easier to create annotations
- More diverse training set

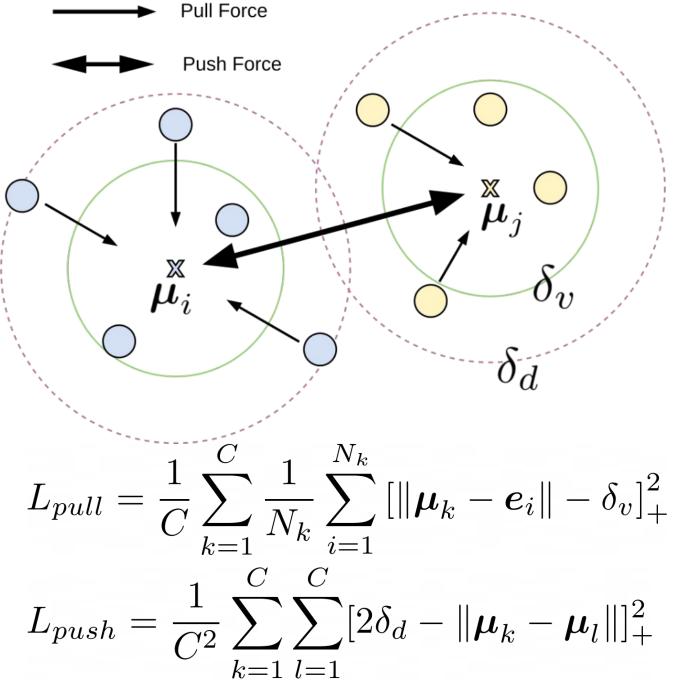
Embedding-based Instance Segmentation

Training [1]



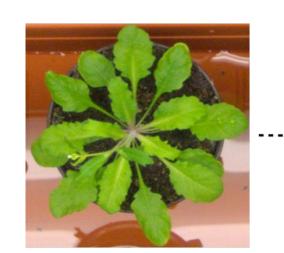
Inference:

- HDBSCAN
- Mean-Shift
- Consistency clustering
- Metric graph partitioning

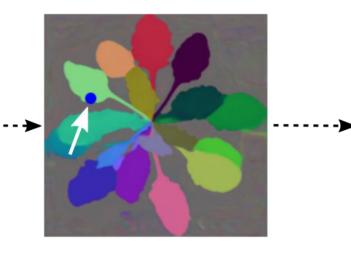


Sparse Object-level Supervision for Instance Segmentation with Pixel Embeddings Adrian Wolny, Qin Yu, Constantin Pape, Anna Kreshuk Code European Molecular Biology Laboratory (EMBL)

• Introduce differentiable instance selection



input



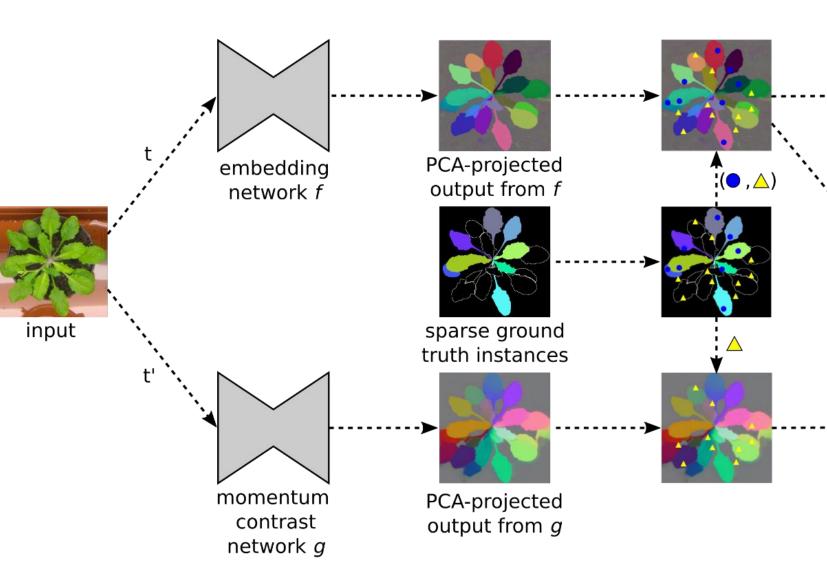
output + anchor \boldsymbol{a}_k

• Use differentiable instance selection in auxiliary losses: supervised instance-based loss (labeled set)

$$L_{obj} = \frac{1}{C} \sum_{k=1}^{C} L_{dice}(S_k, I_k)$$

self-supervised embedding consistency loss (unlabeled set)

$$L_{U_con} = \frac{1}{K} \sum_{k=1}^{K} L_{dice}(S_k^f, S_k^g)$$

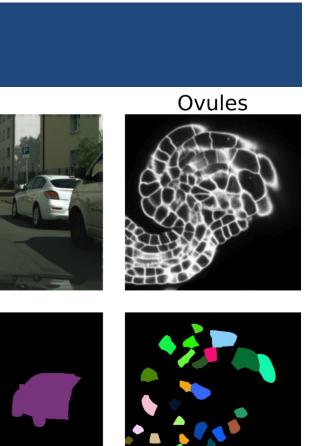


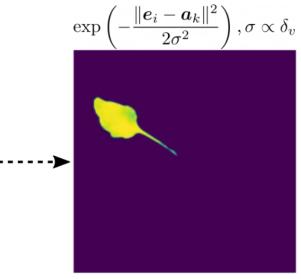
Final loss

 $L = \alpha L_{pull} + \beta L_{push} + \gamma L_{obj} + \lambda L_{U_con}$

References

[1] B. D. Brabandere et al. Semantic Instance Segmentation with a Discriminative Loss Function, CVPR '17 [2] M. Ren et al. End-to-End Instance Segmentation with Recurrent Attention, CVPR '17 [3] V. Kulikov et al., Instance Segmentation of Biological Images Using Harmonic Embeddings, CVPR '20 [4] A. Wolny et al., Accurate and versatile 3D segmentation of plant tissues at cellular resolution, eLife '20





distance map

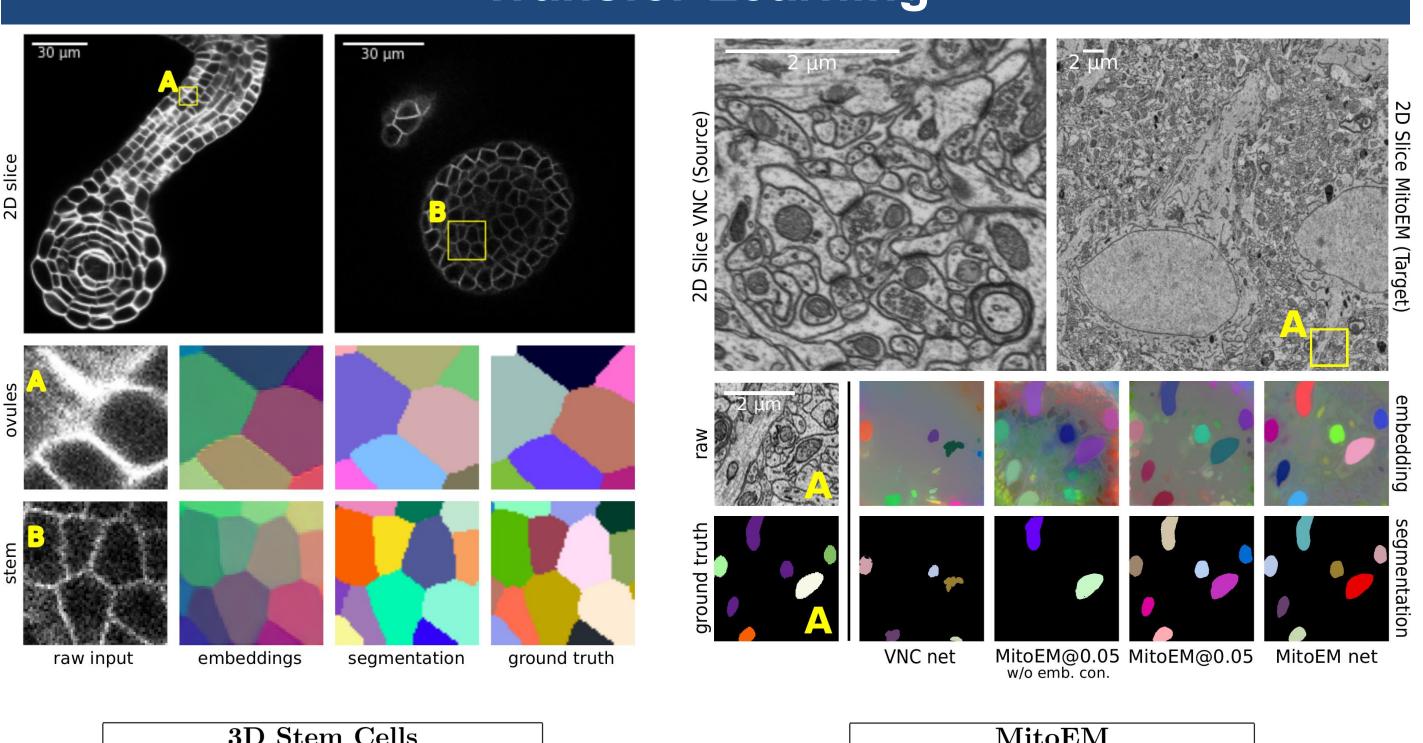
"soft" mask S_k



CVPPP test set Method SBD 0.842Discriminative loss [1 Recurrent attention [2] 0.849Harmonic Embeddings [3] 0.899SPOCO@0.1 0.788SPOCO@0.4 0.8240.932SPOCO

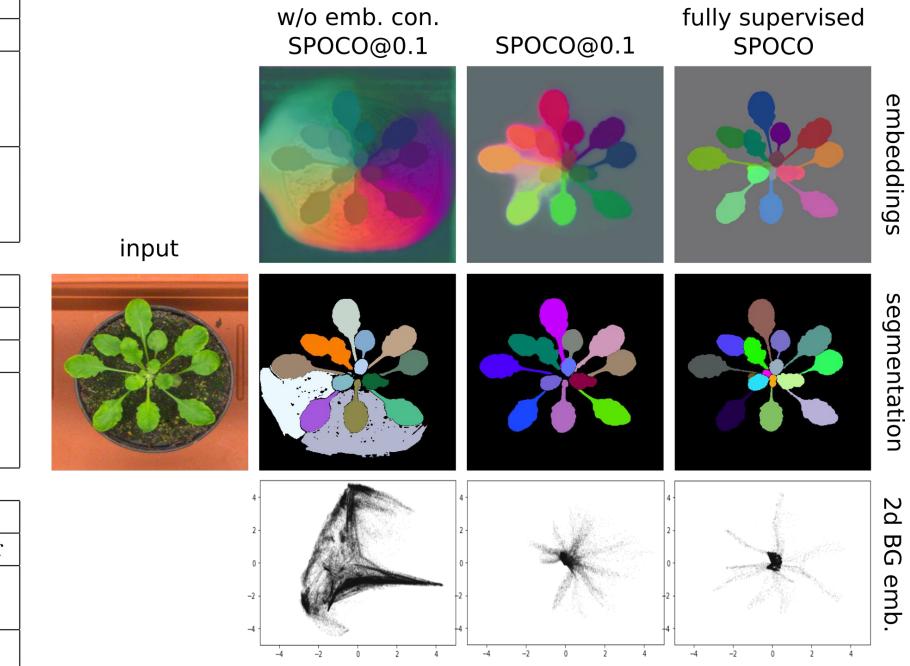
Cityscapes validation set		
Method	mAP@0.5	
Discriminative loss [1]	0.387	
SPOCO@0.1	0.353	
SPOCO@0.4	0.412	
SPOCO	0.459	

3D Ovules test set	
Method	ARand Error
Discriminative loss [1]	0.074
PlantSeg [4]	0.046
SPOCO@0.1	0.069
SPOCO@0.4	0.060
SPOCO	0.048
SPOCO with L_{wgan}	0.042



3D Stem Cells	
Method	ARand Error
Stem only	0.074
Ovules only	0.227
Ovules+Stem@0.01	0.141
Ovules+Stem@0.05	0.109
Ovules+Stem@0.1	0.106

Results



Transfer Learning

${f MitoEM}$		
Method	AP@0.5	
VNC only	0.234	
MitoEM only	0.560	
VNC+MitoEM@0.01	0.368	
VNC+MitoEM@0.05	0.398	
VNC+MitoEM@0.10	0.389	